五年级奥数难题(2010.5.04):数论综合
查字典奥数难题以小学4-6年级的杯赛题为来源,试题挑选、答案详解准确性均经查字典奥数名师鉴证;根据对历年杯赛真题的研究、总结及归纳,结合了赛题中的高频考点、难点、易错点、以及最近几年命题趋势所得;适合志在杯赛中夺取佳绩的学生。
甲乙丙三数分别为603,939,393.某数A除甲数所得的余数是A除乙数所得余数的2倍,A除乙数所得的余数是A除丙数所得余数的2倍,求A.
>>点击查看李佳老师介绍
选题编辑:李佳老师
中山大学本科学历,查字典专职教师。文理兼修,喜欢以数学的角度思考生活百态。中学时期曾获希望杯三等奖、国际中小学楚才作文竞赛一等奖、全国英语知识能力竞赛三等奖。
教学特色:
讲解细致,条理清晰,认真负责,寓教于乐;理解孩童的思维,擅于用生动活泼的语言引导学生;关心孩子的成长,注重培养学生思考探索的习惯。数学是一件工具,一门语言,更是一种思维方式。数学教会头脑理性、逻辑和缜密,奥数更是集中体现了这些。奥数为孩子打开了一扇门,门外是充满了奇思妙想的世界。我很高兴能带着孩子们欣赏其中的风景。
老师教你解难题-试题详解
答案:17.
【分析】:由由余数的性质可知4倍393除以A的余数,等于2倍939除以A的余数,等于甲603除以A的余数.
即603÷A=a…r;( 2×939)÷A=b…r;(4×393)÷A=c…r.
于是有(1878-603)÷A=b-a;(1878-1572) ÷A=b-c;(1572-603)÷A=c-a.
所以A为1275,306,969的约数,(1275,306,969)=17×3=51.
于是A可能是51,17(不可能是3,因为不满足余数是另一个余数的4倍)。
当A为51时,有603÷51=11…42;939÷51=18…21;393÷51=7…36.不满足题意。
当A为17时,有603÷17=35…8;939÷17=55…4;393÷17=23…2.满足题意。
所以,除数A为17.
【小结】余数的性质有:余数的可加、可减和可乘性;如果a 、b除以c的余数相同,那么a与b的差能被c整除。
【五年级奥数难题(2010.5.04):数论综合】相关文章:
相关文章
网友关注
网友关注视频
精品推荐
分类导航
- 太原小学奥数第二讲—有余除法
- 太原小学奥数第一讲—找规律
- 武汉楚才作文登报作品《一件“伟大”事》
- 武汉楚才作文登报作品《又是一年银耳飘香》
- 武汉楚才作文登报作品《芬芳何处寻》
- 武汉楚才作文登报作品《我总想着这些事》
- 一年级奥数等量代换一周练习题及答案
- 小学五年级分解质因数练习题及答案
- 五年级奥数试题及答案:列方程解应用题
- 一年级奥数图文代换提高篇试题级答案
- 小学四年级奥数题含答案:分配比例
- 容斥原理(三年级奥数题及答案)